Ref No:

#29, Hesaraghatta Main road, Chimney Hills, Chikkabanavara P.O., Bengaluru – 560090, Karnataka, INDIA Phone / Fax :+91 80 23721477 -STD- 080 23721315 Web:www.skit.org.in E-mail:skit1princi@gmail.com/principal@skit.org.in

COURSE PLAN

Academic Year 2019 – 20

Program:	B E – MECHANICAL
Semester :	III
Course Code:	18ME34
Course Title:	Material Science
Credit / L-T-P:	4 / 4-0-0
Total Contact Hours:	50
Course Plan Author:	K B Arun Kumar

Academic Evaluation and Monitoring Cell

#29, Hesaraghatta Main road, Chimney Hills, Chikkabanavara P.O., Bengaluru – 560090, Karnataka, INDIA

Phone / Fax :+91 80 23721477 -STD- 080 23721315 Web:www.skit.org.in E-mail:skit1princi@gmail.com/principal@skit.org.in

Table of Contents

A. COURSE INFORMATION	
1. Course Overview	
2. Course Content	
3. Course Material	
4. Course Prerequisites	
5. Content for Placement, Profession, HE and GATE	
B. OBE PARAMETERS	б
	6
1. Course Outcomes	
2. Course Applications	
2. Course Applications4. Mapping Justification	
2. Course Applications	
2. Course Applications4. Mapping Justification	

6. Content Beyond Syllabus	9
C. COURSE ASSESSMENT	10
1. Course Coverage	
2. Continuous Internal Assessment (CIA)	
D1. TEACHING PLAN - 1	
Module - 1	
Module – 2	
E1. CIA EXAM – 1	13
a. Model Question Paper - 1	
b. Assignment -1	
D2. TEACHING PLAN - 2	15
Module – 3	
Module – 4	
E2. CIA EXAM – 2	
a. Model Question Paper - 2	
b. Assignment – 2	
D3. TEACHING PLAN - 3	
Module – 5	
E3. CIA EXAM – 3	
a. Model Question Paper - 3	
b. Assignment – 3	
F. EXAM PREPARATION	
1. University Model Question Paper	
2. SEE Important Questions	
G. Content to Course Outcomes	
1. TLPA Parameters	
2. Concepts and Outcomes:	

Note : Remove "Table of Content" before including in CP Book Each Course Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	ME
Year / Semester :	2/III	Academic Year:	2019-2020
Course Title:	Material Science	Course Code:	18ME34
Credit / L-T-P:	4/4-0-0	SEE Duration:	180 Minutes
Total Contact Hours:	50	SEE Marks:	60Marks
CIA Marks:	40	Assignment	1 / Module
Course Plan Author:	K B Arun Kumar	Sign	Dt:
Checked By:	Sagar H N	Sign	Dt:

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute. Identify 2 concepts per module as in G.

in G.				
Modu le	Module Content	Teaching Hours	Module Concepts	Bloom s Level
1	Introduction to Crystal Structure – Coordination number, atomic packing factor, Simple Cubic, BCC, FCC and HCP Structures, Atomic Diffusion: Phenomenon, Fick's Law s of diffusion; Factors affecting diffusion Mechanical Behavior: Stress-strain diagrams showing ductile and brittle behavior of materials, Engineering and true strains, Linear and nonlinear elastic behavior and properties, Mechanical properties in plastic range. Stiffness, Yield strength, Offset Yield strength, Ductility, Ultimate Tensile strength, Toughness, Plastic deformation of single crystal by slip and twinning, Mechanisms of strengthening in metals Fracture: Type I, Type II and Type III,Fatigue: Types of fatigue loading with examples, Mechanism of fatigue, Fatigue properties, S-N diagram, Fatigue testing. Creep: Description of the phenomenon with examples, three stages of creep, creep properties, Stress relaxation. Concept of fracture toughness	10	Crystal structure, mechanical behavior	L2 unders tand ,13 apply
2	Concept of formation of alloys: Types of alloys, solid solutions, factors affecting solid solubility (Hume Rothery rules), Binary phase diagrams: Eutectic, and Eutectoid systems, Lever rule, Substitutional and interstitial solid solutions, Intermediate phases, Gibbs phase rule Effect of non- equilibrium cooling, Coring and Homogenization Iron-Carbon (Cementite) diagram: description of phases, Effect of common alloying elements in steel, Common alloy steels, Stainless steel, Tool steel, Specifications of steels. Solidification: Mechanism of solidification, Homogenous and Heterogeneous nucleation, Crystal growth, Cast metal structures Solidification of Steels and Cast irons	10	Alloys, iron-carbon diagram	L2 unders tand
3	Heat treating of metals: Time-Temperature-Transformation (TTT) curves, Continuous Cooling Transformation (CCT)curves, Annealing: Recovery, Recrystallization and Grain growth, Types of annealing, Normalizing, Hardening, Tempering, Martempering, Austempering, Concept of hardenability, Factors affecting it hardenability, surface hardening methods: carburizing, cyaniding, nitriding, flame hardening and induction hardening, Age hardening of aluminum-copper alloys and PH steels. Ferrous materials: Properties, Compositions and uses of Grey cast iron, Malleable iron, SG iron and steel	10	Heat treatment	L2 unders tand
4	Composite materials - Definition, classification, types of matrix materials & reinforcements, Metal Matrix Composites(MMCs), Ceramic Matrix Composites (CMCs) and Polymer Matrix Composites (PMCs), Particulate-reinforced and fiber reinforced composites, Fundamentals of production of composites, Processes for production of composites, Characterization of composites, Constitutive relations of composites, Determination of composite properties from component properties, Hybrid composites	10	Non-metals	L2 unders tand
5	Structure types and properties and applications of ceramics. Mechanical / Electrical behavior and processing of Ceramics. Plastics: Various types of polymers/plastics and their applications. Mechanical behaviors and processing of plastics, Failure of plastics. Brief description of other materials such as optical and thermal materials Smart materials – fiber optic materials, piezo-electrics, shape memory alloys Shape Memory Alloys – NitiInol, superelasticity, Biological applications ofsmart materials - materials used as implants in human Body, Selection of Materials, Performance of materials in service Residual life assessment – use of non-destructive testing, Economics, Environment and Sustainability	10	composites	L2 unders tand

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C). Copyright ©2017. cAAS. All rightsreserved. Page # 4 / 22 18ME34

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 - 30 minutes

2. Design: Simulation and design tools used – software tools used ; Free / open source

3. Research: Recent developments on the concepts - publications in journals; conferences etc.

5. Kes	earch. Recent developments on the concepts – publications in journals, conferences etc.	
Modu	Details	Available
le		
Α	Text books (Title, Authors, Edition, Publisher, Year.)	
1,2,3,	Smith, foundations of materials science engineering ,4 th edition,McGraw Hill 2009	In Lib
4,5		
	Willam D Callister material science engineering and introduction Wiley 2006	In Lib
	V ragavan material science and engineering PHI 2002	In Lib
4,5		
	Donald R Askland and pradeep p phule the science and engineering of materials ,cengage learing 4 th Ed 2003	In Lib
C1	Kesttor praveen material science suggi publication	In Dept
C2	Nptel Videos	web
05	https://www.youtube.com/watch?v=5nBBUahtz-	
	c&list=PLyAZSyX8Qy5C8ciqBBlypbx91j4nowUbL	
	https://www.youtube.com/watch?v=UsT0CtabRYY	
	https://www.youtube.com/watch?v=748_ME0p0Ag	
	https://www.youtube.com/watch?v=VMH6qbED7pg	
C4		
C5		
C6		
C7		
C8		
C9		
C10		
D	Software Tools for Design	
· · · · · · · · · · · · · · · · · · ·		

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

SNo	Course	Course Name	Module / Topic / Description	Sem	Remarks	Blooms
	Code					Level
1	1	15PHY12	Engineering physics	Physical	Ι	L2
				geometry Of		
				atoms		
2	2	18EME18/28	Elements of Mechanical Engineering	Material	I/II	L2
				selection		

Students must have learnt the following Courses / Topics with described Content . . .

Note: If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Modu les	Topic / Description	Area	Remarks	Blooms Level
1				

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts per Module. Write 1 CO per Concept.

18ME34

#	Cos	Teach.	Concent	Instr	Assessment	Blooms' Level
#	students should be able to		Concept			BIOOMS Leve
101 (524.1		Hours	G 1	Method	Method	10 1
18ME34.1	Understand the micro structure of the	04	Crystal	Lecture	Assignment	L2 understand
	material		structure		,IA ,unit test	
18ME34.2	Apply the physiological process &	06	Mechanical	Lecture	Assignment	L3 apply
	mechanical behavior with in the material		properties		,IA ,unit test	
18ME34.3	Understand the characteristics and	05	Failure of	Lecture	Assignment	L2 understand
	properties of alloys		materials		,IA ,unit test	
18ME34.4	Study of alloys, steel and solidification	05	alloys,steel and	Lecture	Assignment	L2 apply
			solidification	& ppt	,IA ,unit test	
18ME34.5	Study of heat treatment process to	05	Heat treatment	Lecture	Assignment	L2 understand
	obtained desired properties of alloys			& ppt	,IA ,unit test	
18ME34.6	Understand the properties & potential of	05	Ferrous	Lecture	Assignment	L2 understand
	various materials & selection procedure			and	,IA ,unit test	
	-			ppt		
18M34.7	Understand the process, preparation	05	composites	Lecture	Assignment	L2 understand
	, composition based on application & its		_	and	,IA ,unit test	
	properties to obtained their cumulative			ppt		
	relation of composites					
18M34.8	Understand the Processing	05	Processing	Lecture	Assignment	L2 understand
	ofcomposites		ofcomposites	and	,IA ,unit test	
	1		1	ppt		
18M34.9	Understand the properties and	05	Material	Lecture	Assignment	L2 understand
	potentialities of Material		selection	and	,IA ,unit test	
	1			ppt	, ,	
18M34.10	Understand the various available and	05	Other Material	Lecture	Assignment	L2 understand
	Other Material			and	,IA ,unit test	
				ppt	, ,	
			1	rr-		1

Note: Identify a max of 2 Concepts per Module. Write 1 CO per concept.

2. Course Applications

Write 1 or 2 applications per CO. Students should be able to employ / apply the course learnings to

Modu	Application Area	СО	Level
les	Compiled from Module Applications.		
1	Crystal structure predictions have been used to study organic molecules	CO1	L2
2	Materials used for the designing and manufacturing of any solid material	CO2	L3
3	Automotive. aircraft, railroad electrical spring, tube pipe fitting	CO3	L2
4	Phase diagrams are useful to improve material behavior	CO4	L2
5	Heat treatment are useful to improve the mechanical properties	CO5	L2
6	Knife blades: brake fade, ball bearing gas turbine engine	CO6	L2
7	Space craft, Aircraft Miscellaneous, Automobile parts	CO7	L2

4. Mapping Justification

Mapping		Justification	
СО	PO	-	-
CO1	PO1	Knowledge of microscope is required to understand the micro structure of material	L2
CO2	PO1	Knowledge of stress, strain is required to study the behavior of the material	L2
CO4	PO1	Knowledge of alloys is required to Understand the characteristics and	L2

		properties of alloys	
CO4	PO	Knowledge of iron and carbon and their alloys is required to study the iron-	L2
		carbon diagram for different phases & comparison with metal and alloys	
CO5	PO1	engineering Knowledge is required to study the various heat treatment	L2
		methods	
CO6	PO1	Knowledge of other material selection is required to study of properties of	L2
		different material	
CO7	PO1	Basic knowledge of composites is required in engineering to study composite	L2
		,their properties and application	
CO8	PO1	Knowledge of composites and their properties and application	L2
CO9	PO1	Knowledge of Structure types and properties and applications of ceramics	L2
CO10	PO1	Knowledge of smart materials and applications of smart materials	L2

Note: Write justification for each CO-PO mapping.

4. Articulation Matrix (CO - PO MAPPING)

(UU - PO)	MAPPING						D											
-	-	Course Outcomes					Progr											_
Modules	#	COs	PO1			PO4	PO5		PO7	PO8	PO9				PSO		PS	Lev
				2	3			6				0	11	12	1	O 2	03	el
1	18ME34.1	Understand the of	Х	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		micro structure the																
		material																
1	18ME34.2		Х	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		physiological																
		process &																
		mechanical																
		behaviour of the																
		material																
2	18ME34.3	Understand the		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		characteristics and																
		properties of alloys																
2	18ME34.4	Study of iron-carbon		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		diagram for different																
		phases &																
		comparison with																
		metal and alloys																
3	18ME34.5	5		Х	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		treatment process to																
		obtained desired																
		properties of alloys																
3	18ME34.6	Understand the	Х	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		properties &																
		potential of various																
		materials & selection																
		procedure																
4	18M34.7	Understand the	Х	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		process, preparation																
		,composition based																
4	18M34.8	Understand the	Х	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		application & its																
		properties to																
		obtained their																
		cumulative relation																
		of composites																
5	18M34.9	Understand the		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		Structure types and																
		properties and																

COURSE PLAN - CAY 2019-20

	applications ceramics	of																
5	Knowledge of s materials applications	mart and of	X	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	smart materials																	
-	1.Engineering 4.Conduct Inves Society; 7.Env 10.Communicati Engineering; S2.	tigati ironn on; 1	ions 1ent 1.Pro	of C an ojeci	Comp d t Ma	olex Susta mage	Proble inabi ment	ems; lity; and	5.M 8.1 Find	loder Ethic ince;	n Too s; 9	ol Us 9.Indi	sage ividu	; 6.1 val	The and	Ěngi Te	neer eamw	and ork;

5. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					

Note: Write Gap topics from A.4 and add others also.

6. Content Beyond Syllabus

Modu	Gap Topic	Area	Actions Planned	Schedule Planned	Resources	PO Mapping
les					Person	
3						

Note: Anything not covered above is included here.

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Mod	Title	Teaching		No. o	of quest	ion in I	Exam		CO	Levels
ule #		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
							Asg			
1	Basics, Mechanical Behavior, Failure	10	2	-	-	1	1	2	CO1,	L2,
	of Materials								CO2	L3
2	Concept of formation of alloys:	10	2	-	-	1	1	2	CO3,	L2,
									CO4	L3
3	Heat treating of metals:	10	-	2	-	1	1	2	CO5	L2
4	Ceramics:Plastics:Other materials	10	-	2	-	1	1	2	CO6	L2
5	Composite Materials	10	-	-	4	1	1	2	CO7	L2
-	Total	50	4	4	4	5	5	10	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Evaluation	Weightage in Marks	СО	Levels
CIA Exam – 1	40	CO1,CO2,CO3	L2,
CIA Exam – 2	40	CO4, CO5	L2
CIA Exam – 3	40	CO6, CO7	L2

Assignment - 1	10	CO1,CO2,CO3	L2,
Assignment - 2	10	CO4, CO5	L2
Assignment - 3	10	CO6, CO7	L2
Seminar - 1		CO1,CO2,CO3	L2,
Seminar - 2		CO4, CO5	L2
Seminar - 3		CO6, CO7	L2
Other Activities - define -		CO1 to Co7	L2,
Slip test			
Final CIA Marks	50	-	-

D1. TEACHING PLAN - 1

Module - 1

Title:	Crystal Structure	Appr Time:	10 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Understand the microstore of the material	CO1	L2
2	Apply the physiological process & mechanical behavior with in the boundary limits, comparison with standards	CO2	L2
b	Course Schedule	-	-
Class No	Module Content Covered	СО	Level
1	Introduction to Crystal Structure – Coordination number, atomic packing factor,	C01	L2
2	Simple Cubic, BCC, FCC and HCP Structures,	C01	L2
3	Atomic Diffusion: Phenomenon, Fick's Law s of diffusion; Factors affecting diffusion	C01	L2
4	Stress-strain diagrams showing ductile and brittle behavior of materials,	C01	L2
5	Engineering and true strains, Linear and nonlinear elastic behavior and properties,	C01	L2
6	Mechanical properties in plastic range. Stiffness, Yield strength, Offset Yield strength, Ductility,	C02	L2
7	Ultimate Tensile strength, Toughness, Plastic deformation of single crystal by slip and twinning, Mechanisms of strengthening in metals	C02	L2
8	Fracture: Type I, Type II and Type III,	C02	L2
9	Fatigue: Types of fatigue loading with examples, Mechanism of fatigue, Fatigue properties, S-N diagram, Fatigue testing.	C02	L2
10	Creep: Description of the phenomenon with examples, three stages of creep, creep properties, Stress relaxation. Concept of fracture toughness	C02	L2
c	Application Areas	СО	Level
1	Crystal structure predictions have been used to study organic molecules	CO1	L2
2	Materials used for the designing and manufacturing of any solid material	CO2	L2
d	Review Questions	-	
1	Define APF. Calculate the APF for an ideally packed HCP unit cell.	CO1	L2
2	Classify the crystal defects. Explain point defect with neat sketches.	CO1	L2
3	With neat sketches explain surface defects briefly	CO1	L2
4	List the factors affecting diffusion. Explain them briefly	CO1	L2
5	list linear and non-linear elastic properties. Explain non-linear elastic properties.	CO2	L2
6	draw S-N curve and typical creep curve. Explain them briefly.	CO2	L2
7	With a neat creep curve, explain different stages of creep deformation.	CO2	L2
BME34	Copyright ©2017. cAAS. All rightsreserve	ed.	

Copyright ©2017. cAAS. All rights reserved. Page # 9 / 22

8	Explain the mechanisms of fatigue failure in engineering materials with necessary diagram.	CO2	L2
9	Define the following terms : i) Yield strength ii) Offset yield strength iii) Ductility iv) Ultimate strength v) Toughness.	CO2	L2
10	Compare Plastic deformation by slip and twinning	CO2	L2
11	Explain types of fatigue loading with examples	CO2	L2
e	Experiences	-	-
1			
2			

Title:	Properties and Behaviour of materials	Appr Time:	10 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Understand the characteristics and properties of alloys	CO3	L2
2	Study of iron-carbon diagram for different phases & comparison with metal and alloys	CO4	L2
b	Course Schedule	-	-
Class No	Module Content Covered	CO	Level
1	Concept of formation of alloys: Types of alloys	CO3	L2
2	solid solutions, factors affecting solid solubility (Hume Rothery rules)	CO3	L2
3	Binary phase diagrams: Eutectic, and Eutectoid systems, Lever rule, Substitutional and interstitial solid solutions, Intermediate phases	CO3	L2
4	Gibbs phase rule Effect of non- equilibrium cooling, Coring	CO3	L2
5	Homogenization Iron-Carbon (Cementite) diagram	CO4	L3
6	description of phases, Effect of common alloying elements in steel, Common alloy steels, Stainless steel, Tool steel	CO4	L3
7	Solidification: Mechanism of solidification		
	Homogeneous and Heterogeneous nucleation	CO4	L2
8	Crystal growth, Cast metal structures	CO4	L2
9	Solidification of Steels and Cast irons	CO4	L2
c	Materials used for the designing and manufacturing of any solid material	CO3	L2
	Automotive. aircraft ,railroad electrical spring, tube pipe fitting	CO4	L2
d	Review Questions	-	L2
1	Explain the rules governs the formation of solid solution	CO3	L2
2	What are the different cast metal structures? Explain with neat sketches.	CO3	L2
3	explain Substitutional and Interstitial solid solutions. Discuss Hume — Rothary rules governing formation of solid solution	CO3	L2
4	State lever rule and Gibbs phase rule. Also explain Hume-Rothary rules for formation of solid solution	CO3	L2
5	Explain the Mechanism of solidification	CO3	L2
6	Draw Fe-Fe3C diagram. Explain the reactions in it.	CO4	L2
7	What is an invariant reaction in the Iron-Carbon phase diagram? Explain the Eutectic reaction and peritectic reaction.	CO4	L2
8	Two metals A and B have their melting points at 900°C and 800°C respectively. The alloy pair forms an eutectic at 600°C of composition 60% B. They have unlimited liquid solubilities. The solid solubility of A in B is 10% and that of B in A is 5% at eutectic temperature and remains constant till 0°C. Draw the phase diagram and label all the fields. Find the amount of liquid and solid phases in an alloy of 20% B at 650°C.	CO4	L2

9	two metals A and B have their melting points at 600°C and 400°C respectively. These metals do not form any compound or intermetallic phase. The maximum solubility in each other is 4% which remains the same until 0°C. An eutectic reaction occurs at 300°C for65% A.i) Draw the phase diagram and label all the phases and fields.ii) Find the temperature at which 20% A and 80% B starts and ends solidification.iii) Find the temperature at which the same alloy contain 50% liquid and 50,% solid.	CO4	L2
10	construct a phase diagram using the following data and label all the fields:Melting point of Ag = 961°C Melting point of Cu = $1083°C$ Eutectic temperature = $780°C$ Eutectic composition = 28% Cu. Max. solubility of Cu in Ag = 9% at $780°C$ Max. solubility of Cu in Ag = 2% at $0°C$ Max. solubility of Cu in Ag = 9% at $780°C$ Max. solubility of Cu in Ag = 0% at $780°C$ Max. solubility of Cu in Ag = 0% at $0°C$ Max. solubility of Cu in Ag = 9% at $780°C$ Max. solubility of Cu in Ag = 0% at $0°C$ Max. solubility of Cu in Ag = 0% at $0°C$ Max. solubility of Cu in Ag = 0% at $0°C$ Max. solubility of Cu in Ag = 0% at $0°C$ Max. solubility of Cu in Ag = 0% at $0°C$ Max. solubility of Cu in Ag = 0% at $0°C$ Max. solubility of Cu in Ag = 0% at $0°C$ Max. solubility of Cu in Ag = 0% at $0°C$ Max. solubility of Cu in Ag = 0% at $0°C$ Max. solubility of Cu in Ag = 0% at $0°C$ Max. solubility of Cu in Ag = 0% at $0°C$ Max. solubility of Cu in Ag = 0% at $0°C$ Max. solubility of Cu in Ag = 0% at $0°C$ Max. solubility of Cu in Ag = 0% at $0°C$ Max. solubility of Cu in Ag = 0% at $0°C$ Max. solubility of Cu in Ag = 0% at $0°C$ Max. Solubility of Cu in Ag = 0% at $0°C$ Max. Solubility of Cu in Ag = 0% at $0°C$ Max. Solubility of Cu in Ag = 0% at $0°C$ Max. Solubility of Cu in Ag = 0% at $0°C$ Max. Solubility of Cu in Ag = 0% at 0% Ag alloy. The percentage composition of liquid and solid phase in 00% Ag alloy at $000°C$	CO4	L2
e	Experiences	-	-
1			
2			

E1. CIA EXAM – 1

a. Model Question Paper - 1

Crs C	Code:	18ME34	Sem:	III	Marks:	50	Time: 75	minutes	5	
Cour	se:	Material Sc	eience							
-	-	Note: Answ	er any 2 q	uestions, ea	ach carry equal	marks.		Marks	CO	Level
1	a	Define APF	?Determine	the APF fo	or FCC unit cell			CO1	L2	7
	b						ors affecting diffusion	CO1	L2	8
	с	Explain clea	rly the line	ar & non-li	near elastic prop	erties		CO2	L2	10
					OR					
2	а	Explain the	plastic def		CO2	L2	8			
	b				e material & brit			CO2	L2	7
		to increase the	he carbon cent at the subon on erfo 0.7	content to 0 orface is 0.9		low the sur	ulate the time required rface . Assume that the ¹ m ² /sec		L3	10
		D								0
3	a 1	Explain the	0					CO3	L2	8
	b				le & brittle fractu		1 '4	CO3	L2	8
	с	what is soli	diffication?	Explain the		i pure meta	al with cooling curve	CO4	L2	9
	-	What is an 1:	d colution () Eveloir 41	OR openification of	f colid as	Intion	CO4	1.2	0
	a b				e classification of			CO4 CO3	L2 L2	8
1		Denne raug	ue benavic	b Define fatigue behaviour of material ? With the help of neat sketch discuss the different types of stress cycles						
4	U		As of stress	evelas						

b. Assignment -1

Model Assignment Questions

Crs Cod			III	Marks:	10	Time:	90 – 120 n	ninutes	
Course:		rial Science							
Note: Ea	ach studen	t to answer 2-3 ass	signments.	Each assignmen	t carries eq	ual mark.			
SNo	USN			Assignment Des			Marks	CO	Level
1		What is a cry	stal imperi	fection? Give the	list of crys	stal imperfections.	5	CO2	L2
2		Define atomi FCC.	c packing	factor. Calculate	the atomi	c packing factor f	or 5	CO2	L2
3				ure and an atomi wt. = 63.54 g/mo		1.278 A . Calcula	te 5	CO2	L3
4		Explain the lequations.	Brinell ha	rdness & Rockw	ell Hardne	ess with sketches	& 5	CO2	L2
5		4		etches explain th	e different	stages of ductile cu	ıp 5	CO2	L2
6				are the factors aff	ecting the f	fatigue life?	5	CO2	L2
7		What is Gri	ffith's the		acture? Ex	xplain and give the		CO2	L2
8		sketch any th	ree types o	of Bravais lattices	s.		5	CO2	L2
9				onship between tems[simple cubi		radius and lattied	ce 6	CO2	L2
10		Illustrate the	steady-stat	te diffusion.			4	CO2	L2
11		test of a stee tensile streng	el, an inde th of the st	entation of 3.1 teel.	mm is pro	eter ball in a Brine duced. Estimate th	he	CO2	L3
12		state the stage	es in the cu	up and cone fract	ure		5	CO2	L2
13		Explain how	fatigue life	e can be enhance	d.		4	CO2	L2
14		differentiate b	between ec	lge and screw dis	locations,	with sketches.	6	CO2	L2
15		State and exp	lain Fick's	first law of diffu	sion.		5	CO2	L2
16		raw the stress i) Mild steel i		rve for the follow iii) Cast iron	ing materia	als :	6	CO2	L2
17		diameter of strength of 45	20 mm,wi 50 MPa. If	hen subjected to	a tension r at fracture	having an origin test has a fractu is 12 mm, calcula tress.	re	CO2	L2
18						ress for slip, with	a 7	CO2	L2
19		Define : i) Sp	ace lattice	; ii) Unit cell ; ii	i) Atomic p	backing factor.	6	CO2	L2
20		With a neat s by slip.	ketch, exp	plain the plastic of	leformation	n of a single crysta	al, 5	CO2	L2
21		Differentiate brittleness.	between :	i) Toughness ar	nd resilienc	e; ii) Ductility an	nd 6	CO2	L2
22		define creep. creep.	With a typ	pical creep curve	, explain th	ne different stages	of 5	CO3	L2
23		Write note on	ductile fr	acture.			4	CO2	L2
24		A zinc crysta plane at 60 ° tensile axis.i) direction whe	I is being to the ten What is en a tensile	pulled in tensic sile axis, and wit the resolved she e stress of 0.69 M	h a slip din ear stress, ' IPa is appl	e normal to its bas rection at 40 ° to th T, acting in the sl lied? ii) What tensi ar stress, Tc, of 0.9	he ip le	CO2	L2
25		A copper rod				a load of 110 kg. I e stress at fracture.		CO2	L2

D2. TEACHING PLAN - 2

Title:	Introduction to heat treatment	Appr Time:	10 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Study of heat treatment process to obtained desired properties of alloys	CO5	L2

b	Course Schedule		
~	Module Content Covered	СО	Level
1	Heat treating of metals: Time-Temperature-Transformation (TTT) curves,	C05	Level L2
2	Continuous Cooling Transformation (CCT)curves,	C05	L2 L2
3	Annealing: Recovery, Recrystallization and Grain growth,	CO5	L2
4	Types of annealing, Normalizing, Hardening, Tempering, Martempering, Austempering	CO5	L2
5	Concept of hardenability, Factors affecting it hardenability	CO5	L2
6	surface hardening methods: carburizing, cyaniding, nitriding,	CO5	L2
7	flame hardening and induction hardening,	CO5	L2
8	Age hardening of aluminum-copper alloys and PH steels.	CO5	L2
9	Ferrous materials: Properties, Compositions	CO5	L2
10	uses of Grey cast iron, Malleable iron, SG iron and steel,	CO5	L2
d	Review Questions	-	-
1	Define heat treatment. Give its classification.	CO6	L2
2	Distinguish between Austempering and Martempering.	CO6	L2
3	Draw TIT diagram. Explain briefly.	CO6	L2
4	With neat sketch explain Jominy end quench test.	CO6	L2
5	Explain age hardening of A/-Cu alloys.	CO6	L2
6	Draw a neat labeled TTT diagram for eutectoid steel. Show a cooling curve for the formation of 100% marten site on it and explain the curve	CO6	L2
7	Differentiate clearly between Normalizing and Annealing. Discuss Spheroidising Annealing with applications.	CO6	L2
8	With a neat diagram, explain induction hardening process. Discuss the advantages, limitations and applications of the process.	CO6	L2
9	Discuss on various types of cast irons with necessary micro structures	CO6	L2
10	Explain composition, properties and uses of Gray cast Iron, white cast iron and S. G Iron	CO6	L2
e	Experiences	-	-
1			
2			
5			

Title:	Composite Materials	Appr	10 Hrs
	•	Time:	
а	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Understand the properties & potential of various materials & selection procedure	CO6	L2
b	Course Schedule		
	Module Content Covered	CO	Level
1	Structure types and properties and applications of ceramics.	CO6	Level L2
2	Mechanical / Electrical behavior and processing of Ceramics.	CO6	L2
3	Various types of polymers/plastics and their applications	CO6	L2
4	Mechanical behaviors and processing of plastics, Failure of plastics.	CO6	L2
5	Brief description of other materials such as optical and thermal materials Smart materials – fiber optic materials,	CO6	L2
6	Piezo- electrics, shape memory alloys Shape Memory Alloys – Nitinol, superelasticity	CO6	L2
7	Biological applications of smart materials - materials used as implants in human Body	CO6	L2
8ME34	Copyright ©2017. cAAS. All rightsreserve Page # 13 / 22	ed.	

8	Selection of Materials, Performance of materials in service	CO6	L2
	Residual life assessment – use of non-destructive testing,	CO6	L2
с	Application Areas	СО	Level
	Knife blades: brake fade ,ball bearing gas turbine engine	CO6	L2
d	Review Questions	-	-
1	Define ceramic. Explain briefly the types of ceramics.	CO6	L2
2	List the applications and mechanical properties of ceramics.	CO6	L2
3	Define smart material. Explain briefly the types of smart materials	CO6	L2
4	Write a note on: I) Shape memory alloys ii)Piezo electric materials	CO6	L2
	iii) Fiber optic materials iv) Use of non-destructive testing		
5	describe Shape memory alloys. Explain briefly the applications of shape memory	CO6	L2
	alloys		
6	classify Ceramic materials. Explain the application and processing method of any	CO6	L2
	one class.		
7	Write a note on mechanical properties of ceramics	CO6	L2
8	give classification of polymers. List the characteristics of polymers.	CO6	L2
9	differentiate between Thermo settling and Thermoplastic polymers. What are the	CO6	L2
	advantages and disadvantages of plastic materials?		
10	With a neat sketch explain the processing of plastic by injection moulding method.	CO6	L2
e	Experiences	-	-

E2. CIA EXAM -2

a. Model Question Paper - 2

Crs (Code:	18ME34	Sem:	III	Marks:	50	Time: 7	5 minutes		
Cou	rse:	Material S	Science							
-	-	Note: Ans	wer any 2 qu	estions, ea	ch carry equal	marks.		Marks	CO	Level
	а	Draw the T	TT diagram for	r hyper eutect	toid steel.			5	L2	9
1	b	What is ann	ealing ? Expla	tch.	5	L2	8			
	с	With a neat	6	L2	8					
	OR a Explain microstructure, composition and application of grey and malleable cast iron.									
	а	Explain mic	rostructure, c	6	L2	10				
2	b	With a neat sketch explain, carburizing and nitriding process.							L2	8
	с	Differentiate	e between aust	empering &	martempering.			5	L2	7
	a	With a neat	sketch ,explain	n injection mo	oulding process.			7	L2	8
3	b	Explain fila	ment winding	process with	a neat sketch .			7	L2	8
		Write the cla	assification an	d application	of composites.			8	L2	9
					OR					
	а	Derive the e	quation for yo	ung's moduli	us of FRP compos	site using iso-	-strain condition.	8	L2	9
4	b	material wh	Calculate the tensile modulus of elasticity of unidirectional carbon fiber reinforced composite material which contain 62% by volume of carbon fiber in iso-strain ans iso -stress condition .take $E_{carbon fiber} = 3.86 \times 10^4 \text{kgf/mm}^2$ and $E_{epoxy} = 4.28 \times 10^2 \text{kgf/mm}^2$.							
	с	With a neat	sketch ,explain	n pultrusion p	process.			7	L2	8

b. Assignment – 2

				Ν	Iodel Assignme	nt Questions				
Crs Co	ode:	18ME34	Sem:	III	Marks:	10	Time:	90 – 120 mi	nutes	
Course	e:	Material	Science							
Note:	Each s	tudent to a	answer 2-3 a	assignments.	Each assignme	nt carries eq	ual mark.			
SNo	USN				gnment Descri			Marks	CO	Level
1			the steps to for an eute		TTT diagram. D	raw a label	ed sketch of a T	ГТ 7	CO3	L2
2			e TTT cures					5	CO3	L2
3		Explain	is the effect	t of alloying	element of Fe-O	C diagram an	d CCT diagram	5	CO3	L2
4					els applications a			5	CO3	L2
5		What ar	e the differe	ent types cas	t irons			5	CO3	L2
6		Write a	note on effe	cts of alloyi	ng elements on	cast iron		5	CO3	L2
7		How are	e ductile iron	ns manufact	tured			4	CO3	L2
8		Explain steel	structure an	nd composit	ion of Gray cas	st iron S.G i	ron and low carb	on 7	CO3	L2
9		Give the	e various cla	ssifications	of Gray cast iro	n		4	CO3	L2
10		Explain applicat		tant cooper l	based alloys giv	ing their coi	nposition range a	nd 5	CO3	L2
11		Draw th	e copper- zi	nc phase and	d show different	types of bra	sses in it	6	CO3	L2
12					of Al-Si alloys			5	CO3	L2
13		Explain based al		sition prope	erties and appli	cations of a	ny three aluminu	im 6	CO3	L2
14		Write a	note on AL-	-Cu alloys				5	CO3	L2L2
15		List the	alloying ele	ments and a	pplications of m	agnesium ba	ased alloys	6	CO3	
16		Explain	the compos	ition proper	ties and uses of	any four nor	ferrous alloys	5	CO3	L2
17		Explain	in detail the	BIS classif	ication of steel			6	CO3	L2
18		Write a	note on i) to	ool steel ii) s	tainless steel iii)	chrome stee	el	6	CO3	L2
19					reference to th and die steel iii		ites properties a l bronzes	nd 5	CO3	L2
20		Distingu	ish clearly	between plai	in carbon steels	and alloys st	tells	6	CO3	L2

D3. TEACHING PLAN - 3

Title:	Smart Materials	Appr Time:	10 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Understand the process, preparation , composition based on application & its properties to obtained their cumulative relation of composites	CO7	L2
b	Course Schedule		
Class No	Module Content Covered	CO	Level

1	Composite materials - Definition, classification, types of matrix materials & reinforcements	CO7	L2
2	Metal Matrix Composites (MMCs), Ceramic Matrix Composites (CMCs)	CO7	L2
3	Polymer Matrix Composites (PMCs),	CO7	L2
4	Particulate-reinforced and fiber reinforced composites	CO7	L2
5	Fundamentals of production of composites,	CO7	L2
6	Processes for production of composites	CO7	L2
7	Characterization of composites,,	CO7	L2
8	Constitutive relations of composites	CO7	L2
9	Determination of composite properties from component properties,	CO7	L2
10	Hybrid composites	CO7	L2
с	Application Areas	СО	Level
1	Space craft, Aircraft Miscellaneous, Automobile parts	CO7	L2
d	Review Questions	-	-
1	Define composite. How do you classify composites?	CO7	L2
2	Explain the role of matrix and reinforcement in composite materials	CO7	L2
3	With flow chart explain the production of carbon fiber	CO7	L2
4	with a neat sketch explain pultrusion process	CO7	L2
5	List the advantages and application of composites	CO7	L2
6	classify the composite materials on matrix and reinforcement. List the roles of matrix, reinforcement and interface.	CO7	L2
7	With a neat figure, explain Injection moulding process for particulate reinforced polymer	CO7	L2
8	classify the composite materials on matrix and reinforcement. List the roles of	CO7	L2
	matrix, reinforcement and interface		
9	under Iso stress condition, obtain an expression for Young's modulus of a fibre	CO7	L2
	reinforced composites		
10	Explain the fundamentals of production of FRPs	CO7	L2
e	Experiences	-	-
1			
2			

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs C	Code:	18ME34	Sem:	III	Marks:	50	Time:	75 minutes				
Cours	se:	Material S	cience									
-	-	Note: Ansv	ver any 2 qu	iestions, ea	ch carry equal	marks.		Marks	СО	Level		
1	а	Define cor composite	nposite give	e its classif	fication list the	e advantag	ges and limitations	of 8	CO7	L2		
	b	With a neat winding pro	1	ain filamen	t winding proce	ss. list the	application of filam	ent 7	8 CO7			
			OR									
2	a	OR Derive an expression for the ratio of load shared between the fiber and matr uni-directional composite material when loaded in the directions along the fiber Explain with neat sketch the production of metal matrix composite (MMC)						0	CO7	L2		
	b	Explain with casting	th neat sketc	ch the produ	iction of metal	matrix cor	nposite (MMC) by s	stir 7	CO7	L2		
3	а	With a neat	sketch expl	ain of FRPs	by any two met	hod of ope	en mould process.	6	CO7	L2		
	b	What is the	role of matr	ix ,reinforce	ement and interf	ace in com	posite material	4	CO7	L2		
	с	With a nea polymers	at sketch ex	plain inject	ion moulding p	rocess for	particulate reinforce	ed 5	CO7	L2		
4					OR							

a	With a neat sketch explain filament winding process	7	CO7	L2
b	Discuss the application of Al-SiC composites	8	CO7	L2

b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

				N	Iodel Assignme	nt Question	ns					
Crs Co	ode:	18ME34	Sem:	III	Marks:	5	Time:	9 0 – 120 n	- 120 minutes			
Course			Science									
			answer 2-3 as	U	Each assignmen		qual mark.	1	~~~			
SNo		USN			Assignment De	-		Marks	CO	Level		
1				1	-1		volved the quality	5	CO7	L2		
2					alloys and com			6	CO7	L2		
3		Clearly bring out the difference b/w alloys & composite materials from fundamentals					n 5	CO7	L2			
4			Define com material ove			the adva	ntages of composit	te 6	CO7	L2		
5			Why and ho	w composit	tes superior to co	onventiona	l material	5	CO7	L2		
6			What are th metals & po		e & limitations	of compo	osites as compared t	0 5	CO7	L2		
7			Classify con	nposite mat	erial			5	CO7	L2		
8			Write a no applications	ote on dif	ferent types of	composi	te material & the	ir 5	CO7	L2		
9			Compare me	etal matrix o	composites with	polymer n	natrix composites	5	CO7	L2		
10			Write down			- ·	*	5	CO7	L2		
11			What are the	e main type	s of synthetic fib	er used in	FRPs	5	CO7	L2		
12					nermosetting and			6	CO7	L2		
13							P explain any two o	of 5	CO7	L2		
14			With neat sk	etch explai	n filament windi	ng process	5	5	CO7	L2		
15			Explain spra			- 1		5	CO7	L2		
16			Explain pult	rusion proc	ess			5	CO7	L2		
17			· ·	.	in stir casting pro	ocess		5	CO7	L2		
18					ransfer moulding			5	CO7	L2		
19					moulding compo			5	CO7	L2		
20			With neat sk	etch injecti	on moulding			5	CO7	L2		

F. EXAM PREPARATION

1. University Model Question Paper

Cou	Course: Material Science Month					Month /	/ Year	/201	19
Crs	Crs Code: 18ME34 Sem: III Marks: 80 Time:					Time:		180 minutes	
	Note Answer all FIVE full questions. All questions carry equal marks.							СО	Level
1	1 a Define APF. Calculate APF for HCP cell 6							CO2	L2
	b	With neat sketch explain surface defects briefly						CO2	L2
	с	With a help of stress-s	train diagra	am ,briefly expla	ain ducti	le behavior	7	CO2	L2
		of engineering materia	1						
			(OR					

2	а	Define fracture. Explain types of fracture	6	CO2	L2
	b	What is stress relaxation? obtain an expression for stress relaxation	6	CO2	L2
	c	With S-N diagram explain fatigue behavior of material	8	CO2	L2
3	а	Define fracture. Explain types of fracture	6	CO2	L2
	b	What is stress relaxation? obtain an expression for stress relaxation	7	CO2	L2
	с	With S-N diagram explain fatigue behavior of material	7	CO2	L2
		OR			
4	а	Define creep with a neat creep curve, explain different stages of creep deformation	6	CO2	L2
	b	What are ceramics? Briefly explain the types of ceramics	6	CO2	L2
	с	Write a note on mechanical properties of ceramics	8	CO2	L2
5	а	State and explain lever and Gibbs phase rule. also explain Hume- rothary rules for formation for formation of solid solution	7	CO3	L2
	b	 Two metals A and B have melting points at 900°C and 800°C. The alloy pair forms an eutectic at 600°C of composition 60%B and 40%A. A and B have unlimited mutual liquid solubility. Their solid solubilites are as follows: 10% B in A at 600°C and 5% B in A at 0°C,8% A in B at 600°C and 4% A in B at 0°C, assume liquids, solidus, and solves lines to be straight, no solid state reactions other than solubility changes occur in the series i) Draw the phase diagram for series and label all the temperatures, compositions and fields ii) Find the room temperature structure of an alloy of composition 60% A and 40% B with respect to the number, type, extent and composition of the phases 	8	CO4	L3
6	а	Draw the Iron-Carbon equilibrium diagram, Show all the phase. write the about all the different phases	8	CO4	L2
	b	Define homogeneous and heterogeneous nucleation .obtain an expression for critical radius of nucleation	7	CO4	L2
	с	With a neat sketch explain Induction hardening process, mention advantages and applications	8	CO4	L2
	d	Explain composition properties and uses of Gray cast iron, white cast iron and S.G iron	7	CO4	L2
		OR			
6	а	With a neat sketch explain Induction hardening process, mention advantages and applications	10	CO5	L2
	b	Explain composition properties and uses of Gray cast iron, white cast iron and S.G iron	10	CO5	L2
		OR			
7	а	What is mean by plastic? what are advantage, disadvantage and application of the plastic material	10	CO6	L2
	b	With a neat sketch explain filament winding process. list the application of filament winding process	10	CO6	L2
		OR			
8	а	Define composite give its classification list the advantages and limitations of composite	10	CO7	L2
	b	Explain with neat sketch the production of metal matrix composite (MMC) by stir casting	10	CO7	L2

2. SEE Important Questions

Course	Course: Material Science Mo						Month	n / Year	/20	19
Crs Code:		18ME34	Sem:	III	Marks:	Marks: 80 Time:			180 mii	nutes
	Note	te Answer all FIVE full questions. All questions carry equal marks.						-	-	
Modul	Qno.	Important Que	stion					Marks	CO	Year
e										
1	1 Define APF. Calculate the APF for an ideally packed HCP unit cell.							6	CO2	2017
	2 Classify the crystal defects. Explain point defect with neat sketches. 6							CO2	2016	
	3	With the help	of Stress –	– strain diagra	ams, briefly explain	the ductile a	nd brittle	8	CO2	2016
		behavior of En	gineering	Materials						

2	1	With a neat creep curve, explain different stages of creep deformation.	6	CO2	2017
	2	Explain the mechanisms of fatigue failure in engineering materials with necessary diagram	6	CO2	2016
	3	List and explain the mechanical properties in elastic and plastic region.	8	CO2	2016
3	1	Draw Fe-Fe3C diagram. Explain the reactions in it.	8	CO3	2018
	2	Define homogeneous and heterogeneous nucleation. Obtain an expression for critical radius of nucleus.	6	CO4	2016
	3	Explain the effect of alloying elements to the steel.	6	CO4	2015
4	1	Draw a neat labeled TTT diagram for eutectoid steel. Show a cooling curve for the formation of 100% marten site on it and explain the curve.	8	CO5	2004
	2	Differentiate clearly between Normalizing and Annealing. Discuss Spheroidising Annealing with applications	6	CO5	2004
	3	Define ceramic. Explain briefly the types of ceramics.	6	CO6	2006
5	1	classify the composite materials on matrix and reinforcement. List the roles of matrix, reinforcement and interface.	8	CO7	2013
	2	With a neat figure, explain Injection moulding process for particulate reinforced polymers	6	CO7	2015
	3	list the advantages and limitations of composite materials. Mention any four applications of polymer matrix composite	6	CO7	2017

G. Content to Course Outcomes

1. TLPA Parameters

Table 1: TLPA – Example Course

Mo	Course Content or Syllabus	Content	Blooms'	Final	Identified	Instructio	Assessment
dul	(Split module content into 2 parts which have	Teaching	Learning	Bloo	Action	n	Methods to
e- #	similar concepts)	Hours	Levels for	ms'	Verbs for	Methods	Measure
			Content	Level	Learning	for	Learning
						Learning	
Α	В	С	D	E	F	G	H
1	Introduction to Crystal Structure – Coordination	5	- L1	L2	Understan	Lecture/T	Assignment
	number, atomic packing factor, Simple Cubic,		- L2		d	utorial	
	BCC, FCC and HCP Structures, Atomic Diffusion:						
	Phenomenon, Fick's Law s of diffusion; Factors						
	affecting diffusion Mechanical Behavior:						
	Stress-strain diagrams showing ductile and brittle						
	behavior of materials, Engineering and true strains,						
1	Linear and nonlinear elastic behavior and						
	properties, Mechanical properties in plastic range.						

			2017 20				
	Stiffness, Yield strength, Offset Yield strength,						
	Ductility, Ultimate Tensile strength, Toughness,						
	Plastic deformation of single crystal by slip and						
	twinning, Mechanisms of strengthening in metals						
	Fracture: Type I, Type II and Type III, Fatigue:	5	- L1	L2	Understan	Locturo/T	Assignment
2	Types of fatigue loading with examples,	5	- L1 - L2	LZ	d	utorial	Assignment
			- 112		u	utoriai	
	Mechanism of fatigue, Fatigue properties, S-N						
	diagram, Fatigue testing. Creep: Description of the						
	phenomenon with examples, three stages of creep,						
	creep properties, Stress relaxation. Concept of						
	fracture toughness						
2	Concept of formation of alloys: Types of	5	- L1	L2	Understan	Lecture/T	Assignment
	alloys, solid solutions, factors affecting		- L2		d	utorial	
	solid solubility (Hume Rothery rules),						
	Binary phase diagrams: Eutectic, and						
	Eutectoid systems, Lever rule,						
	Substitutional and interstitial solid						
	solutions, Intermediate phases, Gibbs						
	phase rule Effect of non- equilibrium						
	cooling, Coring and Homogenization						
	Iron-Carbon (Cementite) diagram: description of	5	- L1	1.2.1.3	Understan	Lecture/T	Assignment
	phases, Effect of common alloying elements in	5	- L2	22,23	d	utorial	issignment
	steel, Common alloy steels, Stainless steel, Tool				4	utoriur	
	steel, Specifications of steels. Solidification:						
	Mechanism of solidification, Homogenous and						
	Heterogeneous nucleation, Crystal growth, Cast						
	metal structures Solidification of Steels and Cast						
	irons						
3	Heat treating of metals: Time-Temperature-	5	- L1	L2	Understan	Lecture/T	Assignment
	Transformation (TTT) curves, Continuous Cooling		- L2		d	utorial	
	Transformation (CCT)curves, Annealing: Recovery,						
	Recrystallization and Grain growth, Types of						
	annealing, Normalizing, Hardening, Tempering,						
	Martempering, Austempering, Concept of						
	hardenability	_			** 1	T C	
	Factors affecting it hardenability, surface hardening	5	- L1	L2	Understan		Assignment
	methods: carburizing, cyaniding, nitriding, flame		- L2		d	utorial	
	hardening and induction hardening, Age hardening						
	of aluminum-copper alloys and PH steels. Ferrous						
	materials: Properties, Compositions and uses of Grey cast iron, Malleable iron, SG iron and steel						
	Structure types and properties and applications of	5	- L1	L2	Understan	Lecture/T	Assignment
	ceramics. Mechanical / Electrical behavior and	5	- L1 - L2	LZ	d	utorial	Assignment
	processing of Ceramics. Plastics: Various types of		- 12		u	utorial	
	polymers/plastics and their applications. Mechanical						
	behaviors and processing of plastics, Failure of						
	plastics. Brief description of other materials such as						
	optical and thermal materials Smart materials – fiber						
	optic materials, piezo-electrics,						
	shape memory alloys Shape Memory Alloys –	5	- L1	L2	Understan	Lecture/T	Assignment
	NitiInol, superelasticity, Biological applications		- L2		d	utorial	-
	ofsmart materials - materials used as implants in						
	human Body, Selection of Materials, Performance of						
	materials in service Residual life assessment – use of						
	non-destructive testing, Economics, Environment						
	and Sustainability		<u> </u>				
	Composite materials - Definition, classification,	5	- L1	L2	Understan		Assignment
	types of matrix materials & reinforcements, Metal		- L2		d	utorial	
	Matrix Composites(MMCs), Ceramic Matrix						

	Composites (CMCs) and Polymer Matrix Composites (PMCs), Particulate-reinforced and fiber reinforced composites,					
5	Fundamentals of production of composites, Processes for production of composites, Characterization of composites, Constitutive relations of composites, Determination of composite properties from component properties, Hybrid composites	- L1 - L2	L2	Understan d	Lecture/T utorial	Assignment

2. Concepts and Outcomes:

Table 2: Concept to Outcome – Example Course

			Table 2. Con	<u>cept to Outcome – Exam</u>		
Mo dul	Learning or Outcome from	Identified Concepts	Final Concept	Concept Justification (What all Learning	CO Components (1.Action Verb,	Course Outcome
e- #	study of the Content or Syllabus	from Content		Happened from the study of Content / Syllabus. A short word for learning or outcome)	2.Knowledge, 3.Condition / Methodology, 4.Benchmark)	Student Should be able to
Α	Ι	J	K	L	М	Ν
	Crystal Structure	-	Crystal Structure	structure of the crystal for different materials	- Understand	Understand the Crystal Structure an its types
	Mechanical Behavior	-	Mechanical Behavior	Stress strain diagram of materials	- Understand	- Understand the properties of material and their behaviour
	Failure of Materials	-	Failure of Materials	Fracture	Understand	Understand the Fatigue and creep of a material
	Alloys Steel and solidification	-	Alloys Steel and solidification	Iron carbon diagram	Understand	Understand the type of alloys and iron carbon diagram and different phases
3	Heat treatment	-	Heat treatment,	Time-Temperature transformation(TTT)cur ves and Continous cooling transformation(CCT)cur ves	Understand	Understand the different type of curves
	Heat treatment methods ferrous and non-ferrous alloys	-	Heat treatment methods ferrous and non- ferrous alloys	Flame Hardening ferrous and non-ferrous alloys	Understand	Understand the types of different heat treatment methods,properties and composition of ferrous materials
	Composite materials	-	Composite materials	Composite materials,classification,t ype of matrix and reinforcement	Understand	Understand the types of Composite materials
	Production of Composite materials	-	Production of Composite materials		Understand	Understand the types of Production of MMCs,CMCs,PMCs
	Materials selection	-	Materials selection		Understand	Understand the types of Ceramics, Plastics processing
	Other Material selection		Other Material selection	Smart Materials	Understand	Understand the types of Smart Materials and

Copyright ©2017. cAAS. All rights reserved. Page # 21 / 22

their application
